llama2 使用权重训练脚本

You can follow the steps below to quickly get up and running with Llama 2 models. These steps will let you run quick inference locally. For more examples, see the Llama 2 recipes repository.

  1. In a conda env with PyTorch / CUDA available clone and download this repository.
  2. In the top-level directory run:
    pip install -e .
    
  3. Visit the Meta website and register to download the model/s.
  4. Once registered, you will get an email with a URL to download the models. You will need this URL when you run the download.sh script.
  5. Once you get the email, navigate to your downloaded llama repository and run the download.sh script.
    • Make sure to grant execution permissions to the download.sh script
    • During this process, you will be prompted to enter the URL from the email.
    • Do not use the “Copy Link” option but rather make sure to manually copy the link from the email.
  6. Once the model/s you want have been downloaded, you can run the model locally using the command below:
torchrun --nproc_per_node 1 example_chat_completion.py \
    --ckpt_dir llama-2-7b-chat/ \
    --tokenizer_path tokenizer.model \
    --max_seq_len 512 --max_batch_size 6

Note

  • Replace llama-2-7b-chat/ with the path to your checkpoint directory and tokenizer.model with the path to your tokenizer model.
  • The –nproc_per_node should be set to the MP value for the model you are using.
  • Adjust the max_seq_len and max_batch_size parameters as needed.
  • This example runs the example_chat_completion.py found in this repository but you can change that to a different .py file.

图片

# 句子补全
torchrun –nproc_per_node 1 example_text_completion.py \ –ckpt_dir llama-2-7b/ \ –tokenizer_path tokenizer.model \ –max_seq_len 128 –max_batch_size 4
# 对话生成
torchrun –nproc_per_node 1 example_chat_completion.py \ –ckpt_dir llama-2-7b-chat/ \ –tokenizer_path tokenizer.model \ –max_seq_len 512 –max_batch_size 4

 

 

torchrun –nproc_per_node 1 ./example_text_completion.py –ckpt_dir ../models/llama-2-7b/ –tokenizer_path ../models/llama-2-7b/tokenizer.model –max_seq_len 512 –max_batch_size 6

最低配:
torchrun –nproc_per_node 1 example_text_completion.py –ckpt_dir llama-2-7b/ –tokenizer_path tokenizer.model –max_seq_len 64 –max_batch_size 2

 

ln -h ./llama-2-7b-tokenizer.model ./llama-2-7b/tokenizer.model

 

脚本说明:

torchrun: PyTorch的分布式启动工具,用于启动分布式训练

–nproc_per_node 1: 每个节点上使用1个进程

example_text_completion.py: 要运行的训练脚本

–ckpt_dir llama-2-7b/: 检查点保存目录,这里是llama-2-7b,即加载Llama 7B模型

–tokenizer_path tokenizer.model: 分词器路径

–max_seq_len 512: 最大序列长度

–max_batch_size 6: 最大批大小

扫码领红包

微信赞赏支付宝扫码领红包

发表回复

后才能评论